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Abstract 

Background  The Illumina sequencing systems demonstrate high efficiency and power and remain the most popular 
platforms. Platforms with similar throughput and quality profiles but lower costs are under intensive development. In 
this study, we compared two platforms Illumina NextSeq 2000 and GeneMind Genolab M for 10x Genomics Visium 
spatial transcriptomics.

Results  The performed comparison demonstrates that GeneMind Genolab M sequencing platform produces highly 
consistent with Illumina NextSeq 2000 sequencing results. Both platforms have similar performance in terms of 
sequencing quality and detection of UMI, spatial barcode, and probe sequence. Raw read mapping and following 
read counting produced highly comparable results that is confirmed by quality control metrics and strong correla-
tion between expression profiles in the same tissue spots. Downstream analysis including dimension reduction and 
clustering demonstrated similar results, and differential gene expression analysis predominantly detected the same 
genes for both platforms.

Conclusions  GeneMind Genolab M instrument is similar to Illumina sequencing efficacy and is suitable for 
10x Genomics Visium spatial transcriptomics.
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Background
Single-cell RNA sequencing (scRNA-seq) has become a 
powerful approach to characterize the gene expression 
profile in single cells [1]. This method allows processing 
tens and hundreds of thousands of single cells simulta-
neously to measure their transcriptional profiles [2, 3]. 
ScRNA-seq technique provides a higher resolution of cel-
lular differences and better understanding of cell popu-
lations and their relationships [4, 5]. However, a serious 
practical obstacles related to cell stress, cell death, and/or 
cell aggregation during cell isolation for scRNA-seq exist, 
accompanied by the loss of spatial context. Moreover, 
some cell types in tissue, in particular immune cells, are 
not always easily isolated from tissue [6].
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Spatial transcriptomics provides quantitative gene 
expression data within the spatial context of tissues and 
cells on tissue sections [7]. Among single-cell spatial 
transcriptomics methods, 10x Genomics Visium is a bar-
coding technique that gives an information about cell-
type composition on the spots [8]. While “bulk” cDNA 
libraries have relatively plain structure, Visium cDNA 
libraries are composed of several elements making these 
libraries more sophisticated. For example, Visium librar-
ies obtained from formalin-fixed paraffin-embedded 
(FFPE) samples include spatial barcodes, unique molecu-
lar identifiers (UMI) at the Read 1, and probe sequences 
at the Read 2. Base calling errors at these library ele-
ments could cause loss of information about spatial posi-
tion, UMI assignment, and probe origin. Therefore, these 
complicated libraries demand high sequencing quality.

The Illumina sequencing systems demonstrate high 
efficiency and power and remain the most popular plat-
forms that is confirmed by the dominance in the litera-
ture and in the amount of data submitted to the Sequence 
Read Archive [9]. Platforms with similar throughput and 
quality profiles but lower costs (cost per read) are under 
intensive development [10].

In October 2020, GeneMind Biosciences Company 
Limited (GeneMind) launched a new sequencing instru-
ment (GenoLab M) that is fully compatible with Illumina 
based libraries and does not require any library conver-
sion [11]. It was revealed that the GenoLab M is a prom-
ising sequencing platform for transcriptomics and long 
non-coding RNA profiling in animal, plant, and human 
with comparable performance but a lower cost compared 
to NovaSeq 6000 (Illumina) [11, 12]. However, the per-
formance of the GenoLab M platform in other applica-
tions has not yet been tested, for example, for single cell 
sequencing including spatial transcriptomics.

Here, we compared the relative performance of 
GeneMind Genolab M and Illumina NextSeq 2000 
for 10x Genomics Visium spatial sequencing. The 
same cDNA libraries prepared from three ovarian 

cancer samples were sequenced in two platforms, and 
the efficacy and accuracy of results were analyzed by 
bioinformatics.

Results
Quality of sequencing
In order to assess concordance of the Illumina Next-
Seq 2000 and GeneMind Genolab M sequencing plat-
forms for spatial transcriptomics, we sequenced three 
10x Genomics Visium libraries of FFPE ovarian tumor 
tissues. The main metrics are provided in Table 1.

The mean number of reads for the NextSeq 2000 and 
Genolab M platforms was about 72 and 62 million, 
respectively. The percentage of valid barcodes and per-
centage of valid UMIs were 0.74% and 0.1% higher in 
NextSeq 2000. Base calling accuracy was also higher in 
the NextSeq  2000. The percentage of Q30 bases (99.9% 
base call accuracy) in barcode, probe, and UMI reads was 
about 1.6%, 2.2%, and 2.6% higher in the NextSeq 2000, 
respectively. Furthermore, there was apparent difference 
in the sequencing saturation, which was higher when 
using NextSeq 2000. This could be due to the fact that 
the sequencing depth and the number of read duplication 
were lower with using the Genolab M platform (Supple-
mentary Table 1).

Raw reads mapping and counting
The raw sequencing reads from two sequencers were 
aligned to the probe reference and assigned to tissue 
spots by corresponding barcode sequences, and then 
the aligned and assigned reads were counted. The sum-
marized quality metrics of processed data are included 
in Table 2. The fraction of reads under tissue spots was 
consistent between two platforms with insignificant dif-
ferences. The mean number of reads per spot and the 
mean number of reads per spot under tissue were in 
accordance with the sequencing depth. The median num-
ber of UMI counts and genes per spot and the number of 
detected genes were higher in the Genolab M platform, 

Table 1  Unity of sequencing quality of the samples in two sequencing platforms

Slide A1-1 A1-2 B1-2

Platform NextSeq 2000 Genolab M NextSeq 2000 Genolab M NextSeq 2000 Genolab M

Number of Reads 57,183,864 53,580,387 70,380,616 64,184,316 88,306,199 68,468,084

Valid Barcodes 98.20% 97.60% 97.40% 96.70% 98.30% 97.40%

Valid UMIs 100.00% 99.90% 100.00% 99.90% 100.00% 99.90%

Sequencing Saturation 31.90% 10.70% 69.70% 62.90% 48.80% 29.00%

Q30 Bases in Barcode 96.50% 95.50% 96.70% 94.70% 96.60% 94.90%

Q30 Bases in Probe Read 97.00% 95.10% 96.70% 94.30% 97.20% 94.80%

Q30 Bases in UMI 97.20% 95.20% 97.40% 94.40% 97.30% 94.60%



Page 3 of 9Pavel et al. BMC Genomics          (2023) 24:102 	

excepting the number of detected genes in B1-2 slide. 
However, uniquely detected genes in both platforms had 
markedly low number of UMIs (Supplementary Figure 
S1A, B) suggesting that these genes have sporadic origin. 
The percentage of confidently mapped reads to probe set 
was slightly higher for NextSeq 2000 that is concordant 
with higher sequencing quality of the probe reads. Nev-
ertheless, Genolab M showed the higher percentage of 
confidently mapped reads to filtered probe set.

The filtered probe set is the probe set filtered from 
hybridization probes with high similarity to poten-
tial non-specific target genes, so reads from this set 
are mapped to unique genes. However, the differences 
between read mapping to the filtered probe set were 
insubstantial and could arise sporadically.

Characterization of the genes, UMIs, reads, and tissue 
spots
The raw sequencing reads were converted into the 
feature-barcode matrix following a read mapping and 
counting in the Space Ranger. The resulting feature-bar-
code matrixes were loaded into the R environment for 
downstream analysis in the Seurat R package. The Pear-
son correlation coefficient was used to assess concord-
ance of the sequencing results in the tissue spots. There 
were strong correlations between the total number of 
UMIs and the total number of detected genes in the tis-
sue spots (Fig. 1A). The gene-UMI relationship (Fig. 1B) 
for all samples was consistent between two platforms 
and in accordance to expected distribution. We surveyed 
GC-content profiles in both forward and reverse reads. 
GC-content profiles were highly consistent between two 
platforms (Fig.  1C), indicating no any apparent biases 
between read coverage in two sequencers.

In order to perform downstream analysis, we fil-
tered out low expressed genes and tissue spots with 

insufficient number of genes using the following 
thresholds: genes expressed in less than 10 tissue spots 
and tissue spots with less than 200 filtered genes. Then, 
overlapping of the filtered genes between two plat-
forms was examined (Fig. 1D). Since there is no well-
established criterion to filter out low-expressed genes 
and tissue spots, different studies choose different 
thresholds and criterions. The main purpose of filter-
ing is removing low expressed genes, which can affect 
dimension reduction processes introducing additional 
noise to data. The thresholds in our manuscript were 
chosen by survey articles where 10x Genomics Visium 
technology was used. Closest thresholds to our analy-
sis were used within the article [13].

The number of unique genes in the Genolab M plat-
form was still higher than in the NextSeq 2000, while 
the proportion between unique and overlapping genes 
after filtration in both platforms became lower.

Nevertheless, more detailed insight revealed that all 
unique genes in both platforms had poor coverage and 
distributed on the edge of the chosen threshold for gene 
filtration (Supplementary Figure S1C) that indicate 
their sporadic nature. The read counts were normalized 
via the SCTransform function in the Seurat package. 
The SCTransform utilized regularized negative-bino-
mial regression to remove the influence of sequencing 
depth and other specified unwanted sources of varia-
tion. The normalized counts were used for correlation 
analysis between the overlapping genes (Fig. 1D). There 
were strong correlations between overlapping genes in 
spots sequenced on both platforms. Mean correlation 
coefficients were 0.82, 0.90, and 0.99 in A1-1, A1-2, and 
B1-2 samples, respectively (Fig.  1E). Analysis of the 
sequencing quality metrics did not reveal any robust 
metrics explaining differences in correlation coeffi-
cients obtained for the samples.

Table 2  Quality control metrics of the raw read mapping and counting

Slide A1-1 A1-2 B1-2

Platform NextSeq 2000 Genolab M NextSeq 2000 Genolab M NextSeq 2000 Genolab M

Fraction Reads in Spots Under Tissue 80.30% 80.40% 83.30% 83.40% 70.30% 70.20%

Mean Reads per Spot 20,278 19,000 27,482 25,062 44,622 34,597

Mean Reads Under Tissue per Spot 15,975 14,885 15,672 14,174 25,492 19,558

Median UMI Counts per Spot 10,744 12,618 2,751 2,918 10,275 10,405

Median Genes per Spot 4,565 5,034 1,647 1,736 3,866 3,930

Genes Detected 16,736 16,852 16,441 16,532 16,779 16,767

Reads Mapped to Probe Set 98.60% 98.30% 96.10% 95.90% 98.10% 97.50%

Reads Mapped Confidently to Probe Set 97.50% 97.30% 60.80% 60.30% 70.90% 70.50%

Reads Mapped Confidently to the Filtered Probe Set 73.30% 74.20% 44.80% 45.50% 55.10% 55.50%
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Dimension reduction, clusterization, and differential 
expression
The normalized read counts were merged and renor-
malized via the SCTransform function. Figure 2A dem-
onstrates no observable batch effect between samples 
sequenced on NextSeq 2000 and Genolab M. In further 
analysis, SCTransform function without batch effect 
correction was applied. The resulted SCT normalized 
counts were used for linear dimension reduction via 
PCA approach, and the first 30 principal components 
were used for clusterization and non-linear dimension 
reduction. SNN analysis based clustering algorithm was 
used for clusterization of tissue spots. UMAP approach 

was used for visualization of tissue spots and clusteri-
zation in two dimensions. Results of SNN clusteriza-
tion and UMAP dimension reduction are depicted 
in Fig.  2A. Tissue spots from the samples analyzed by 
different sequencing platforms were placed in close 
proximity. Figure  2B demonstrates cluster distribution 
on the tissue sections. There were not recognizable dif-
ferences between spatial cluster distribution in spots 
sequenced on both platforms. A1-1 sample had the 
most complex structure regarding number of defined 
clusters and their distribution on the tissue section. 
A1-2 sample had less number of clusters, and B1-2 
section had simplest spatial distribution of clusters. 

Fig. 1  Characterization of the read counts, UMIs, and detected genes obtained from two sequencing platforms. A Correlation between the number 
of transcripts (UMIs) and the number of detected genes in the tissue spots. B The genes and UMIs distribution in the tissue spots in two sequencing 
platforms. C GC-content profiles of raw reads in two sequencing platforms. D The unique and common genes between two sequencing platforms. 
E Distribution of the Pearson correlation coefficients of the common SCT transformed gene counts
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Collectively, aforementioned evidence regarding spatial 
clustering could account for difference in tissue spot 
correlation coefficients between three samples.

Since there is no observable batch effect, DEG analy-
sis can be performed directly on counts after sequenc-
ing depth normalization via SCTransform. The SCT 
normalized counts were used in the Wilcoxon Rank 
Sum test to find differentially expressed genes in each 
sample separately. Genes were considered differentially 
expressed if FDR < 0.01 and LFC > 0.25. Figure  2C-E 
demonstrates results of differential expression analysis. 
The number of unique genes detected by NextSeq 2000 
and Genolab M is around 16% out of all DEGs detected 
by both platforms for all clusters; the overlapping rate is 
about 68%. Therefore, DEGs predominantly overlapped 

between same clusters originated from two sequencing 
platforms.

Characterization of differentially expressed genes
The unique and common DEGs were further character-
ized to evaluate origin of the platform-specific DEGs. 
The distribution of DEG counts in tissue spot clusters 
was visualized to evaluate platform-specific DEGs. Sup-
plementary Figure S2 demonstrates that both unique 
and common genes had corresponding count coverage; 
therefore, platform-specific DEGs did not arise from 
low expressed genes. The distributions of LFC and FDR 
of DEGs were visualized following count coverage char-
acterization of DEGs. Figure  3A demonstrates distribu-
tion of DEG LFC in tissue spot clusters. Predominantly, 

Fig. 2  Downstream non-linear dimension reduction, clusterization, and differential expression of the filtered and normalized data. A The UMAP 
dimension reduction and clusterization results of the sequencing counts from two sequencing platforms without batch effect correction. B Spatial 
distribution of the obtained clusters. C-E Venn diagrams of the common and the platform-unique differentially expressed genes (DEGs) of the slide 
clusters
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Fig. 3  Cluster DEG characterization by the log twofold-change (LFC) and the FDR. A LFC distribution of the common and unique DEGs in the 
clusters. B FDR distribution of the common and unique DEGs in the clusters. Count is a number of DEGs
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all platform-specific DEGs had LFC distributed on the 
edge of the chosen threshold. Furthermore, FDR of plat-
form-specific DEGs (Fig.  3B) tended to have least sig-
nificant values. The LFC and FDR distributions indicated 
that platform-specific DEGs predominantly had lowest 
–log (FDR) and LFC close to the chosen LFC threshold. 
Therefore, unique DEGs could be primarily arose due 
to stochastically exceeding in chosen thresholds in both 
platforms. On the contrary, common DEGs had steadily 
higher -log(FDR) and LFC compared to unique DEGs. 
Supplementary Figure S3 demonstrates distinct differ-
ences in FDR and LFC between common and unique 
DEGs detected in clusters of sequenced samples. Top 
DEGs almost fully consist of overlapping DEGs.

Discussion
This is the first study demonstrating the use of Gen-
eMind Genolab M platform for 10x Genomics Visium 
spatial transcriptomics. Moreover, this study first com-
pared sequencing performance of GeneMind Genolab 
M with Illumina NextSeq 2000 platform. Both platforms 
employ sequencing by synthesis using a reversible termi-
nator approach [14]. Fluorescently labeled nucleotides 
are incorporated at a time by polymerase to extending 
sequencing primer each sequencing cycle. Differences 
between Genolab M and NextSeq 2000 sequencing tech-
niques include distinct fluorescent labeling approaches. 
Genolab M utilizes four-color fluorescent labeling mark-
ing each nucleotide with distinct fluorescent labels. 
NextSeq 2000 employs two fluorescent dyes in four com-
binations: one label for C, another label for T, both labels 
for A, and no label for G. More specified protocol for 
GenoLab M sequencing is described in the study by Liu 
et al. [12].

Our study showed that GeneMind Genolab M sequenc-
ing platform generates consistent with Illumina NextSeq 
2000 sequencing results. Sequencing quality metrics 
indicated highly comparable base calling accuracy in 
UMI sequence, spatial barcode sequence, and probe read 
sequence. Comparable base calling accuracy resulted in 
consistent quality control metrics of the raw read map-
ping and counting. Furthermore, Genolab M and Next-
Seq 2000 platforms had similar levels of RNA molecule 
(UMI) and gene detection. Both platforms had identical 
GC-content profiles of raw reads. Almost all detected 
genes were overlapped between two platforms; moreover, 
there were strong correlations between these overlap-
ping genes in spots. Normalization, dimension reduction 
and clusterization showed particularly consistent results. 
Identical spot clusters were identified in each sample 
sequenced using both platforms. Spatial distribution of 
spot clusters was predominantly similar without obvi-
ous differences. The concordance of both platforms was 

also high in the DEG analysis between obtained clusters. 
Furthermore, platform-specific DEGs predominantly 
had lowest FDR and LFC; therefore, unique DEGs could 
be primarily arose stochastically. Meanwhile, common 
DEGs detected in clusters of sequenced samples have the 
highest –log (FDR) and LFC and almost fully consist of 
top DEGs. Since top DEGs are almost fully overlapped 
between both platforms, downstream analysis, e.g. gene 
set enrichment analysis, should produce highly consist-
ent results. All above-mentioned data indicate high con-
cordance between GeneMind Genolab M and Illumina 
NextSeq 2000 platforms for 10x Genomics Visium spatial 
sequencing.

Conclusions
In summary, this is the first study demonstrating that 
GeneMind Genolab M instrument has similar to Illumina 
NextSeq 2000 sequencing efficacy and is suitable for 
10 × Genomics Visium spatial transcriptomics.

Materials and methods
Sample description and library preparation
Three tumor FFPE samples obtained from patients with 
high-grade serous ovarian cancer were analyzed. Patients 
were treated in the Department of Gynecological Oncol-
ogy, Cancer Research Institute of Tomsk National 
Research Medical Center (Tomsk, Russia). The study was 
carried out according to Declaration of Helsinki (from 
1964, revised in 1975 and 1983) and was approved by 
the local committee of Medical Ethics of Tomsk Cancer 
Research Institute; all patients signed informed consent 
for the study. Shortly, FFPE tissue sections were placed 
on the Capture Areas of 10x Genomics Visium slides, 
deparaffinized, and stained by hematoxylin and eosin. 
Tumor tissue slides were scanned using the Leica Aperio 
AT2 station (Leica, Germany) and images were pro-
cessed with Aperio ScanScope. Libraries were prepared 
using standard protocol provided by 10x Genomics (User 
Guide | CG000407).

Sequencing
The obtained cDNA libraries were analyzed following 
10x Genomics sequencing recommendation for FFPE 
Visium libraries. Sequencing cycles comprised 28  bp 
(Read 1), 10 bp (Index 1 and 2) and 50 bp (Read 2). Illu-
mina NextSeq 2000 sequencing was performed using 
NextSeq 1000/2000 P2 reagents (100 cycles), whereas 
GeneMind Genolab M used FCM reagents (150 cycles).

Bioinformatics processing
Raw sequencing reads were primary processed in the 
Space Ranger v.1.3 using the count command with 
default parameters. Raw reads were additionally assessed 
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with FastQC [15] algorithm, and results were visualized 
with MultiQC [16] tool. After read mapping and count-
ing, resulted feature-barcode matrix was uploaded into R 
environment and processed via the Seurat [17] R pack-
age. The Pearson correlation coefficient was used to eval-
uate consistence in total UMI and detected gene number 
between two platforms in tissue spots. Overlapping of the 
genes between two platforms was visualized using Venn 
diagram. Normalization of the raw read counts in feature-
barcode matrix was performed with the SCTransform 
[18] function in the Seurat package. The Pearson corre-
lation coefficient between normalized expression profiles 
of overlapped genes was calculated for each tissue spot in 
the samples. The SCTransform normalized counts were 
merged and renormalized without application of batch 
effect correction. Linear dimension reduction via princi-
pal component analysis (PCA) and non-linear dimension 
reduction via uniform manifold approximation and pro-
jection [19] (UMAP) were applied to the merged normal-
ized counts. Clusterization of tissue spots was performed 
with shared nearest neighbor (SNN) clusterization using 
first 30 principal components. FindAllMarkers function 
in the Seurat package was applied to SCT normalized 
counts using the Wilcoxon Rank Sum test to reveal dif-
ferentially expressed genes (DEGs) in spatial clusters for 
each sample separately. FDR correction was performed 
using the Benjamini–Hochberg method. The distribu-
tions of log twofold-change (LFC) and false discovery 
rate (FDR) of DEGs were used to assess non-overlapping 
DEGs. The ggplot2 [20] R package was used to visualize 
most of comparison results.
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